2025-05-22 16:57:34
精选答案
n+1)³-n³=(n³+3n²+3n+1)-n³=3n²+3n+1,则:2³-1³=3×1²+3×1+13³-2³=3×2²+3×2+14³-3³=3×3²+3×3+15³-4³=3×4²+3×4+16³-5³=3×5²+3×5+1…………(n+1)³-n³=3×n²+3×n+1上面所有的式子相加,得:(n+1)³-1³=3×[1²+2²+3²+…+n²]+3×[1+2+3+…+n]+n(n+1)³-1=3Sn+3×[n(n+1)/2]+n得:Sn=[n(n+1)(2n+1)]/6
2025-05-22 16:57:34
其他答案
若 n 是正整数,则:s_n = a + a^2 + a^3 + ... + a^n其中 a 是常数。解:s_n = a + a^2 + a^3 + ... + a^(n-1) + a^n将 s_n 乘以 a:a * s_n = a^2 + a^3 + ... + a^n + a^(n+1)将 a * s_n 减去 s_n:(a * s_n) - s_n = a^(n+1) - a因此:s_n * (a - 1) = a^(n+1) - as_n = (a^(n+1) - a) / (a - 1)
